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ABSTRACT: Surface reactions between Ni-rich cathode materi-
als and electrolytes limit the achievable specific capacity and
lifetime in the high energy density Li-ion batteries based on these
cathode materials. A core−shell approach, which contains a less
reactive shell-phase on top of a high-capacity core-phase, can be
used to reduce these surface reactions. However, interdiffusion of
the elements in the core and shell phases can occur during
calcination, which limits the choice of elements to be used in the
shell phase and the temperature window of synthesis, and often
increases the minimum shell thickness. Tungsten oxide (WO3)
coating on the surface of precursors leads to the formation of
LixWyOz secondary phases during the heat treatment with LiOH·
H2O. These LixWyOz phases infuse into the grain boundaries and prevent interdiffusion between the core and shell phases.
Tungsten-containing Ni-rich core−shell cathode materials with Mn- or Al-based shells show enhanced electrochemical
performance because of reduced surface reactivity due to the core−shell microstructure and additional mechanical strength
owing to the presence of LixWyOz phases in the grain boundaries.

There is a tremendous demand for Li-ion batteries in
both the transport sector and power sector to reduce
their respective greenhouse emissions in the coming

years.1 The estimated scale of required Li-ion batteries across
consumer electronics, stationary storage, and transportation
will reach TWh scales by 2030.2 Enhancing the lifetimes of
high volumetric and gravimetric energy density batteries is
critical to make battery electric vehicles (BEVs) more efficient
and to enable vehicle to grid (V2G) operation while vehicles
are parked, without compromising the cumulative driving
range of the vehicle.3 This has led to global research efforts
toward optimizing both bulk and surface properties to improve
the lifetime of high density layered Ni-rich oxide materials.4

One approach to increase the lifetime of Ni-rich cathode
materials is to reduce the relative amount of Ni at the surface
of the particles. Unwanted reactions such as surface
reconstruction from layered to disordered rock-salt, electrolyte
reactions with highly reactive surface Ni4+ species at a high
state of delithiation, gas generation, and safety limitations, etc.,
can all be directly correlated with high Ni content at the
surface.5−8 Core−shell or concentration gradient hydroxide
precursors have been proposed where some Mg, Co, Mn, or Al
is substituted for Ni near the surface of secondary particles
while maintaining a Ni-rich core for high energy density.9−11

This is a good approach; however, these substituents are prone

to interdiffusion to the core during the heat treatment with
LiOH·H2O, making the surface passivation less effective.12,13

It is challenging to prevent interdiffusion with Mg- and Al-
based shells even when using a considerable shell thickness.14

Moreover, an increase in shell thickness compromises the
energy density of these Ni-rich cathode materials. Mn-based
shells are less prone to interdiffusion but at smaller thicknesses,
they still can interdiffuse to the core during the synthesis.15

Generally, to prevent interdiffusion in such designs, the
temperature or heating time needs to be limited, which may
compromise the crystallinity of the layered material and
therefore its electrochemical performance.16 Interdiffusion has
been identified as a major challenge to overcome for the
preservation of core−shell or other special microstructure
designs after heat treatment.17

Coatings of high-valence metal compounds have been
explored in Ni-rich materials, including those with W, Ti,
Ta, Sb, Nb, etc.18−21 Tungsten addition has been reported
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previously to improve the performance and recently published
work shows that W does not substitute into the TM layer but
rather stays in the grain boundaries in the form of LixWyOz
secondary phases.22−26 This behavior is not unique to W. Mo,
Nb, and Sb are also observed to be enriched at grain
boundaries.27,28 The formation of secondary phases in the
grain boundaries can potentially act as a barrier to prevent
interdiffusion of transition metals during synthesis, therefore,
making it possible to synthesize core−shell and other
microstructures even with elements like Mg and Al which
ordinarily diffuse rapidly. Stable thin shells may also be
possible to produce without compromising the optimum
synthesis temperature.
This work shows that the addition of 1% W through dry

particle coating on hydroxide precursors29 can prevent
interdiffusion in thin Mn-rich core−shell microstructures as
shown in the schematic in Figure 1. W addition also prevents
Al interdiffusion from Al-rich shells even at relatively high
synthesis temperatures like 800 °C. Cross-sectional energy
dispersive spectroscopy (EDS) line scans show that Mn and Al
present in the shell in the precursor are found to be uniformly
distributed throughout the bulk in materials without W after
synthesis, while they are perfectly preserved in their initial
spatial distribution under the same synthesis conditions after
the addition of W. These materials containing W, with intact
core−shell structure, also outperform all core−shell materials
due to the additional benefits of optimal synthesis and the
presence of LixWyOz phases in the grain boundaries. The
addition of elements like W, which form secondary phases in
the grain boundaries, helps overcome the major challenge of
interdiffusion in specially designed cathode structures and
enables new avenues of cathode material designs.
The synthesized core−shell materials were first characterized

by X-ray diffraction (XRD). The XRD patterns shown in
Figure S1a suggest good crystalline material for samples with
and without tungsten. The expanded 20°−35° region in Figure
S1b shows a broad peak resulting from the amorphous
LixWyOz phases in the samples containing W. The peaks visible
in 20°−35° region for CS-NiAl-16/01 and W-NiAl-16/01
samples correspond to Li5AlO4 phases as reported pre-
viously.16 Tables S2 and S3 show the Rietveld refinement
results for the materials synthesized in this work. The core−

shell materials with Mn-rich shells show some increase in the
amount of Ni in the Li layer when W is present while the
core−shell materials with Al-rich shells show similar values for
materials with and without W for the materials synthesized at
800 °C. The variations in the amount of Ni in the Li layer can
be caused by the Li-deficiency of the samples due to formation
of LixWyOz phases and Li loss during synthesis.30

Figure S4 shows Williamson-Hall plots of the materials with
and without W to help deconvolute differences between
crystallite size and inhomogeneous strain in these materials.
The results of Rietveld refinement for the full width half-
maximum (fwhm) of the Cu Kα1 peaks were used to plot
fwhm × cos(θ) vs sin(θ) where θ is the Bragg angle. The slope
of a W−H plot is proportional to the inhomogeneous strain in
the materials caused by the lattice constant variation in the
sample, and the intercept of a W−H plot gives information
about the crystallite grain size.31,32 In these studies, there is
only a head-to-head comparison between the samples so the
full width at half-maximum of the Cu Kα1 peak was used,
without deconvoluting the instrumental resolution.
All the W-containing samples show a larger value of the y

intercept in the W−H plots in Figure S4 than the
corresponding materials without W. This indicates smaller
crystallite grain size for materials containing W. Figure S6
shows the smaller size of the primary crystallites for the W-
containing samples, which agrees with previous studies.25,26

The materials without W, CS-NiMn-17/0.5, CS-NiMn-16/01,
CS-NiAl-17/0.5, and CS-NiAl-16/01 show slopes of 0.091,
0.157, 0.097, and 0.126 deg, respectively which indicates an
increased inhomogeneous strain in the materials which had a
larger thickness shell layer in the precursor.14 Figure S5 shows
that the slopes of W−H plots for core−shell materials are
larger for synthesis temperatures where the shell remains.
Slope values decrease by increasing synthesis temperatures
from 750 to 800 °C for CS-NiMn-17/0.5 and CS-NiMn-16/
01. The slope values are similar for Al based core−shell
materials at both 750 and 800 °C and an Al based shell is not
preserved at either of these synthesis temperatures. Zhang et al.
also indicate that presence of shell increases the strain in the
crystal structure and can be observed as increased slope in W−
H plots.14 Figure S4 shows that the materials which contain W,
W-CS-NiMn-17/0.5, W-CS-NiMn-16/01, W-CS-NiAl-17/0.5,

Figure 1. Schematic showing the challenge of interdiffusion in core−shell structured particles during synthesis and the preservation of the
initial microstructure in WO3 coated precursors after calcination due to presence of LixWyOz phases (shown in yellow) in the grain
boundaries. In this work, M can be Mn or Al.
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and W-CS-NiAl-16/01, show increased slopes of 0.238, 0.278,
0.240, and 0.244 deg, respectively, compared to the
corresponding samples without W. The values of strain in all
the W-containing materials are larger than that seen in the
materials without tungsten and suggest the preservation of the
core−shell structures in all these W-containing materials. The
presence of the W-containing phases in grain boundaries
prevents the interdiffusion of the core and shell phases, leading

to the presence of two phases with similar, yet different lattice
constants, broadening diffraction peaks and creating the
increased slope in the W−H plots.
Parts a and b of Figure 2 show EDS line scans over cross

section scanning electron microscopy (SEM) images of the
hydroxide precursors of CS-NiMn-17/0.5 and CS-NiAl-16/01.
These line scans show the Mn and Al signals at the surface
corresponding to the Ni0.8Mn0.2(OH)2 and Ni0.8Al0.2(OH)2

Figure 2. Cross sectional SEM images and EDS line scans of (a) CS-NiMn-17/0.5 hydroxide precursor, (b) CS-NiAl-16/01 hydroxide
precursor, (c) CS-NiMn-17/0.5 synthesized at 800 °C, (d) CS-NiAl-16/01 synthesized at 800 °C, (e) 1%W-containing W-CS-NiMn-17/0.5
synthesized at 800 °C, and (f) 1%W-containing W-CS-NiAl-16/01 synthesized at 800 °C

Figure 3. Galvanostatic cycling of (a) CS-NiMn-17/0.5−800C and W-CS-NiMn-17/0.5−800C and (b) CS-NiAl-16/01−800C and W- CS-
NiAl-16/01−800C (c, d) Corresponding first cycle differential capacity (dQ/dV) vs voltage curves.
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shell compositions, respectively. When these materials are
lithiated at the synthesis temperature of 800 °C, the shell
interdiffuses to the core and no distinguishable Mn or Al
signals are observed at the edges of cross section line scans
shown in parts c and d of Figure 2. The thin Mn-rich shell used
in this study is prone to interdiffusion even at a synthesis
temperature of only 750 °C as shown by Liu et al.,15 while Al-
rich shells totally interdiffuse to the core even at 700 °C.17 By
contrast, parts e and f of Figure 2 show that the Mn-rich and
Al-rich shells are perfectly maintained for the 1%W-containing
materials even at a synthesis temperature of 800 °C. Although
the precursor composition is the same, the LixWyOz phases
which form during synthesis infuse into the grain boundaries
and inhibit the interdiffusion of the surface metals to the core
therefore maintaining the desired core−shell microstructure
after lithiation. Figure S7 shows that W-CS-NiMn-16/01 and
W-CS-NiAl-17/0.5 also show preserved core−shell structures
after lithiation at a synthesis temperature of 800 °C for 20 h.
Charge−discharge cycling shows the dramatically better

performance of W-containing materials with preserved Mn-
containing and Al-containing shells and LixWyOz phases in the
grain boundaries. The LixWyOz phases in the grain boundaries
provides strength to the polycrystalline particles and prevents
microcracking.33 Figure 3a shows that the specific capacity of
CS-NiMn-17/0.5 (no W and core−shell structure eliminated
by interdiffusion) after 100 cycles is found to be less than 80%
of W-CS-NiMn-17/0.5 (800 °C) (contains W and core−shell
structure is intact) after 100 cycles. Figure 3b shows a similar
cycling stability for W-CS-NiAl-16/01.
Notably, the reference materials CS-NiMn-17/0.5 and CS-

NiAl-16/01 shown in parts a and b of Figure 3 exhibit an
unusually poor capacity retention. Figure S8a shows striking
secondary particle cracking in cycled CS-NiMn-17/0.5 where
significant cracking is occurring. This indicates a poor
mechanical strength of these core−shell microstructured
materials. Figure S8b shows that the addition of W reinforces
the secondary cathode particles structurally.
The capacity increase seen in electrochemical cycling of W-

containing materials can be possibly associated with the

evolution of LixWyOz phases present in grain boundaries
during the initial cycling. A good formation protocol strategy
or optimization of the amount of W coating might be a
possible solution for this capacity creep, which needs to be
further explored.
Figure 3c shows suppressed peaks in dQ/dV vs V plots for

W-CS-NiMn-17/0.5 (800 °C) compared to CS-NiMn-17/0.5
which is presumably due to the Mn-rich shell phase.15

Addition of W is seen to suppress the kinetic hindrance region
peak below 3.6 V and the H2 → H3 phases transition a
remnant peak near 4.2 V during the formation cycle shown in
Figure 3c. The intensities of these peaks are also affected by
the increased cation mixing for W-containing samples. Figure
3d shows that the addition of W further suppressed the H2 →
H3 transition remnant peak for W-CS-NiAl-16/01 compared
to CS-NiAl-16/01, which can be associated with the preserved
shell structure.
Figure 4a shows that W-CS-NiMn-17/0.5 heated to 800 °C

performs better than CS-NiMn-17/0.5 made at the same
synthesis temperature and also leads to better specific capacity
at the end of 100 cycles due to improved capacity retention in
comparison to materials made from the same precursor
without W at all the synthesis temperatures tested in this
work. Figure 4b shows W-CS-NiMn-16/01 heated at 800 °C
has a comparable capacity retention to CS-NiMn-16/01 made
at 750 °C. CS-NiMn-16/01 shows quite good capacity
retention even without W due to its thicker shell compared
to CS-NiMn-17/0.5. However, the thicker shell leads to a
compromise in specific capacity. Figure 4c shows a cross-
section EDS line scan of W-CS-NiMn-17/0.5 after 100 cycles,
which confirms that the thin Mn-rich shell is preserved after
cycling. Figure 4d shows that W-CS-NiMn-17/0.5 heated to
800 °C shows the best capacity retention followed by W-CS-
NiAl-16/01. These core−shell microstructures outperform W-
containing LiNiO2, prepared from 1% WO3 coated Ni(OH)2
heated with LiOH·H2O in terms of fractional capacity
retention.25 All the different W-containing materials shown
in Figure 4d show significantly better retention than the simple
LiNiO2 cathode material.

Figure 4. (a) Galvanostatic cycling of CS-NiMn-17/0.5 synthesized at different temperatures compared to W-CS-NiMn-17/0.5. (b)
Galvanostatic cycling of CS-NiMn-16/01 synthesized at different temperatures compared to W-CS-NiMn-16/01. (c) Cross-sectional SEM
image and EDS line scans of W-CS-NiMn-17/0.5−800C recovered from a half-cell after 100 cycles. (d) Comparison of cycling performance
of W-containing core−shell materials with pristine and W-containing LiNiO2.
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Electrochemical impedance spectroscopy (EIS) measure-
ments were performed at 3.7 V on the pristine half cells and
the cells after 100 cycles. Figure S9 compares EIS of CS-NiMn-
16/01 and CS-NiAl-16/01 half cells at 3.7 V with their
respective W-coated versions before cycling. W-coated
materials for fresh cells show similar impedance spectra as
non-W containing materials while parts a and b of Figure 5
show that W-CS-NiMn-17/0.5 and W-CS-NiAl-16/01 after
100 cycles have much lower interfacial and charge transfer
resistance than CS-NiMn-17/0.5 and CS-NiAl-16/01, respec-
tively. The W coating is hence observed to be effective in
suppressing the impedance increase over cycling by virtue of a
preserved shell and the presence of W-based secondary phases
in the grain boundaries of the secondary particle.
Figure 5c shows rate capability measurements on half cells of

W-CS-NiMn-17/0.5 and CS-NiMn-17/0.5 after 100 cycles.
The rate capability of the W-containing sample after 100 cycles
is far superior to the sample without W. Figure S9 shows that
pristine cells of W-CS-NiMn-16/01 and CS-NiMn-16/01 or
W-CS-NiAl-16/01 and CS-NiMn-16/01 show comparable rate
capability. The CS-NiMn-17/0.5 material is expected to be
reactive with electrolyte since the Mn-rich shell has been
eliminated by interdiffusion. This could lead to a greater
propensity for forming a surface rock-salt phase over cycling
which hinders diffusion. Figure 5d shows similar rate capability
studies made on CS-NiAl-16/01 and W-CS-NiAl-16/01 after
100 cycles. In this case, the fractional capacity retained at the
various C-rates is similar.
In summary, the presence of LixWyOz secondary phases in

the grain boundaries eliminates the interdiffusion of Mn and Al
from the shell to the core in Ni-rich core−shell materials. In
addition, the presence of both the intact shell and the LixWyOz
phases in the grain boundaries facilitates better electrochemical
performance than materials without W even if the core−shell
structure is maintained by using a lower synthesis temperature.
This behavior is probably not unique to W, and it is

expected that elements like Mo, Sb, Zr and Nb, which are also
found in the grain boundaries, can be used to slow or prevent
interdiffusion between core and shell elements.
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